Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 44(4): 677-686, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29164955

RESUMO

OBJECTIVE: This study aims to clarify the role of surfactant and drug molecular structures on drug solubility in micellar surfactant solutions. SIGNIFICANCE: (1) Rationale for surfactant selection is provided; (2) the large data set can be used for validation of the drug solubility parameters used in oral absorption models. METHODS: Equilibrium solubility of two hydrophobic drugs and one model hydrophobic steroid in micellar solutions of 19 surfactants was measured by HPLC. The drug solubilization locus in the micelles was assessed by UV spectrometry. RESULTS: Danazol is solubilized much more efficiently than fenofibrate by ionic surfactants due to ion-dipole interactions between the charged surfactant head groups and the polar steroid backbone. Drug solubilization increases linearly with the increase of hydrophobic chain length for all studied surfactant types. Addition of 1-3 ethylene oxide (EO) units in the head group of dodecyl sulfate surfactants reduces significantly the solubilization of both studied drugs and decreases linearly the solubilization locus polarity of fenofibrate. The locus of fenofibrate solubilization is in the hydrophobic core of nonionic surfactant micelles and in the palisade layer of ionic surfactant micelles. CONCLUSIONS: Highest drug solubility can be obtained by using surfactants molecules with long chain length coupled with hydrophilic head group that provides additional drug-surfactant interactions (i.e. ion-dipole) in the micelles.


Assuntos
Excipientes/química , Preparações Farmacêuticas/química , Tensoativos/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Danazol/administração & dosagem , Danazol/química , Óxido de Etileno/química , Fenofibrato/administração & dosagem , Fenofibrato/química , Micelas , Estrutura Molecular , Dodecilsulfato de Sódio/química , Solubilidade , Solventes , Espectrofotometria Ultravioleta , Esteroides/química
2.
Langmuir ; 28(11): 4996-5009, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22360410

RESUMO

Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.

3.
Langmuir ; 28(2): 1115-26, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22168570

RESUMO

We study the effect of two cationic polymers, with trade names Jaguar C13s and Merquat 100, on the rheological properties of foams stabilized with a mixture of anionic and zwitterionic surfactants (sodium lauryloxyethylene sulfate and cocoamidopropyl betaine). A series of five cosurfactants are used to compare the effect of these polymers on foaming systems with high and low surface dilatational moduli. The experiments revealed that the addition of Jaguar to the foaming solutions leads to (1) a significant increase of the foam yield stress for all systems studied, (2) the presence of consecutive maximum and minimum in the stress vs shear rate rheological curve for foams stabilized by cosurfactants with a high surface modulus (these systems cannot be described by the Herschel-Bulkley model anymore), and (3) the presence of significant foam-wall yield stress for all foaming solutions. These effects are explained with the formation of polymer bridges between the neighboring bubbles in slowly sheared foams (for inside foam friction) and between the bubbles and the confining solid wall (for foam-wall friction). Upon addition of 150 mM NaCl, the effect of Jaguar disappears. The addition of Merquat does not noticeably affect any of the foam rheological properties studied. Optical observations of foam films, formed from all these systems, show a very good correlation between the polymer bridging of the foam film surfaces and the strong polymer effect on the foam rheological properties. The obtained results demonstrate that the bubble-bubble attraction can be used for efficient control of the foam yield stress and foam-wall yield stress, without significantly affecting the viscous friction in sheared foams.

4.
Langmuir ; 27(20): 12486-98, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21894983

RESUMO

Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3 min. Molecular interpretations of the observed trends are proposed when possible. Surprisingly, in the course of our study we found experimentally that the drop shape analysis method (DSA method) shows a systematically lower surface elasticity, in comparison with the other two methods used: Langmuir trough and capillary pressure tensiometry with spherical drops. The possible reasons for the observed discrepancy are discussed, and the final conclusion is that the DSA method has specific problems and may give incorrect results when applied to study the dynamic properties of systems with high surface elasticity, such as adsorption layers of saponins, lipids, fatty acids, solid particles, and some proteins. The last conclusion is particularly important because the DSA method recently became the preferred method for the characterization of fluid interfaces because of its convenience.


Assuntos
Saponinas/química , Tensoativos/química , Adsorção , Modelos Moleculares , Estrutura Molecular , Reologia , Propriedades de Superfície
5.
Phys Rev Lett ; 103(11): 118302, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19792405

RESUMO

Foam and emulsion jamming at low shear rates is explained by considering the thinning dynamics of the transient films, formed between neighboring bubbles and drops. After thinning gradually to a critical thickness, these films undergo an instability transition, which leads to the formation of very thin "black films" providing strong adhesion between the dispersed particles. Analysis shows that such film thickness instability occurs only if the contact time between particles is sufficiently long-an explicit expression for the respective critical shear rate is derived and compared to experimental data.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 1): 051405, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19113128

RESUMO

This experimental study is focused on the process of bubble breakup in steadily sheared foams, at constant shear rate or constant shear stress. Two different types of surfactants were used and glycerol was added to the aqueous phase, to check how the bubble breakup depends on the surface modulus and on bulk viscosity of the foaming solutions. The experiments show that bubble breakup in foams occurs above a well defined critical dimensionless stress, tau[over]CR identical with(tauCRR/sigma) approximately 0.40, which is independent of surfactant used, solution viscosity, and bubble volume fraction (varied between 92 and 98%). Here tauCR is the dimensional shear stress, above which a bubble with radius R and surface tension sigma would break in sheared foam. The value of the critical stress experimentally found by us tau[over]CR approximately 0.40, is about two orders of magnitude lower than the critical stress for breakup of single bubbles in sheared Newtonian liquids, tau[over]CR approximately 25. This large difference in the critical stress is explained by the strong interaction between neighboring bubbles in densely populated foams, which facilitates bubble subdivision into smaller bubbles. A strong effect of bubble polydispersity on the kinetics of bubble breakup (at similar mean bubble size) was observed and explained. Experiments were also performed with hexadecane-in-water emulsions of drop volume fraction 83%

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 1): 011405, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18763954

RESUMO

In a recent Letter [N. D. Denkov, Phys. Rev. Lett. 100, 138301 (2008)] we calculated theoretically the macroscopic viscous stress of steadily sheared foam or emulsion from the energy dissipated inside the transient planar films, formed between neighboring bubbles or drops in the shear flow. The model predicts that the viscous stress in these systems should be proportional to Ca 1/2, where Ca is a capillary number and n=1/2 is the power-law index. In the current paper we explain our model in detail and develop it further in several aspects: First, we extend the model to account for the effects of viscous friction in the curved meniscus regions, surrounding the planar films, on the dynamics of film formation and on the total viscous stress. Second, we consider the effects of surface forces (electrostatic, van der Waals, etc.) acting between the surfaces of the neighboring bubbles or drops and show that these forces could be important in emulsions, due to the relatively small thickness of emulsion films (often comparable to the range of action of surface forces). In contrast, the surface forces are usually negligible in steadily sheared foams, because the dynamic foam films are thicker than the extent of surface forces, except for foams containing micrometer-sized bubbles and/or at very low shear rates. Third, additional consideration is made for bubbles or drops exhibiting high surface viscosity, for which we demonstrate an additional contribution to the macroscopic viscous stress, created by the surface dissipation of energy. The new upgraded model predicts that the energy dissipation at the bubble or drop surface leads to power-law index n<1/2 , whereas the contribution of the surface forces leads to n>1/2 , which explains the rich variety of foam or emulsion behaviors observed upon steady shear. Various comparisons are made between model predictions and experimental results for both foams and emulsions, and very good agreement is found.

8.
Langmuir ; 24(18): 9956-61, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18698860

RESUMO

A new class of surfactant mixtures is described, which is particularly suitable for studies related to foam dynamics, such as studies of foam rheology, liquid drainage from foams and foam films, and bubble coarsening and rearrangement. These mixtures contain an anionic surfactant, a zwitterionic surfactant, and fatty acids (e.g., myristic or lauric) of low concentration. Solutions of these surfactant mixtures exhibit Newtonian behavior, and their viscosity could be varied by using glycerol. Most importantly, the dynamic surface properties of these solutions, such as their surface dilatational modulus, strongly depend on the presence and on the chain-length of fatty acid(s). Illustrative results are shown to demonstrate the dependence of solution properties on the composition of the surfactant mixture, and the resulting effects on foam rheological properties, foam film drainage, and bubble Ostwald ripening. The observed high surface modulus in the presence of fatty acids is explained with the formation of a surface condensed phase of fatty acid molecules in the surfactant adsorption layer.

9.
Phys Rev Lett ; 100(13): 138301, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18518002

RESUMO

We present a model for the viscous friction in foams and concentrated emulsions, subject to steady shear flow. First, we calculate the energy dissipated due to viscous friction inside the films between two neighboring bubbles or drops, which slide along each other in the flow. Next, from this energy we calculate the macroscopic viscous stress of the sheared foam or emulsion. The model predictions agree well with experimental results obtained with foams and emulsions.

10.
Phys Chem Chem Phys ; 10(12): 1608-27, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18338062

RESUMO

The aim of this paper is to present a short overview of the main mechanisms operative in the formation and stabilization of emulsions by solid particles and, on this basis, to make comparisons between solid particles, surfactants and globular proteins as emulsifiers. When available, simple quantitative relations are presented, with the respective numerical estimates and discussion of the applicability of these relations to particle-stabilized systems. Non-obvious similarities between the different types of emulsifiers are outlined in several cases in which the description of the system can be performed at a phenomenological level. Examples are presented for the process of emulsification, where we show that several simple theoretical expressions, derived originally in the studies of surfactants and protein emulsifiers, can be successfully applied to particle-stabilized emulsions. In contrast, for the phenomena in which the detailed mechanisms of particle adsorption and film stabilization are important, the differences between the various emulsifiers prevail, thus making it impossible to use the same theoretical description. The most important specific characteristics of the solid particles which strongly affect their behavior are the high barrier to particle adsorption, high desorption energy and strong capillary forces between particles trapped in liquid films, which all originate in the relatively large particle size (as compared to the size of surfactant and protein molecules). The capillary mechanism of stabilization of liquid films by solid particles is reviewed in some detail, to emphasize its specific features and to demonstrate the applicability of several simple expressions for approximate estimates. Interestingly, we found that the hypothesis for some exceptionally high coalescence stability of the particle-stabilized emulsions is not supported by the experimental data available in literature. On the other hand, the particles are able to completely arrest the process of Ostwald ripening in foams and emulsions, and this effect can be easily explained with the high desorption energy of the particles and the resulting capillary effects.


Assuntos
Emulsificantes/química , Microesferas , Proteínas/química , Tensoativos/química , Algoritmos , Emulsões/química , Reologia , Eletricidade Estática
11.
Adv Colloid Interface Sci ; 119(1): 1-16, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16303116

RESUMO

The surfactant transfer in micellar solutions includes transport of all types of aggregates and the exchange of monomers between them. Such processes are theoretically described by a system containing tens of kinetic equations, which is practically inapplicable. For this reason, one of the basic problems of micellar kinetics is to simplify the general set of equations without loosing the adequacy and correctness of the theoretical description. Here, we propose a model, which generalizes previous models in the following aspects. First, we do not use the simplifying assumption that the width of the micellar peak is constant under dynamic conditions. Second, we avoid the use of the quasi-equilibrium approximation (local chemical equilibrium between micelles and monomers). Third, we reduce the problem to a self-consistent system of four nonlinear differential equations. Its solution gives the concentration of surfactant monomers, total micelle concentration, mean aggregation number, and halfwidth of the micellar peak as functions of the spatial coordinates and time. Further, we check the predictions of the model for the case of spatially uniform bulk perturbations (such as jumps in temperature, pressure or concentration). The theoretical analysis implies that the relaxations of the three basic parameters (micelle concentration, mean aggregation number, and polydispersity) are characterized by three different characteristic relaxation times. Two of them coincide with the slow and fast micellar relaxation times, which are known in the literature. The third time characterizes the relaxation of the width of the micellar peak (i.e. of the micelle polydispersity). It is intermediate between the slow and fast relaxation times, in the case of not-too-low micellar concentrations. For low micelle concentrations, the third characteristic time is close to the fast relaxation time. Procedure for obtaining the exact numerical solution of the problem is formulated. In addition, asymptotic analytical expressions are derived, which compare very well with the exact numerical solution. In the second part of this study, the obtained set of equations is applied for theoretical modeling of surfactant adsorption from micellar solutions under various dynamic conditions, corresponding to specific experimental methods.


Assuntos
Tensoativos/química , Cinética , Micelas , Modelos Químicos , Tamanho da Partícula , Soluções/química , Propriedades de Superfície , Fatores de Tempo
12.
Adv Colloid Interface Sci ; 119(1): 17-33, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16309620

RESUMO

Here, we apply the detailed theoretical model of micellar kinetics from part 1 of this study to the case of surfactant adsorption at a quiescent interface, i.e., to the relaxation of surface tension and adsorption after a small initial perturbation. Our goal is to understand why for some surfactant solutions the surface tension relaxes as inverse-square-root of time, 1/t(1/2), but two different expressions for the characteristic relaxation time are applicable to different cases. In addition, our aim is to clarify why for other surfactant solutions the surface tension relaxes exponentially. For this goal, we carried out a computer modeling of the adsorption process, based on the general system of equations derived in part 1. This analysis reveals the existence of four different consecutive relaxation regimes (stages) for a given micellar solution: two exponential regimes and two inverse-square-root regimes, following one after another in alternating order. Experimentally, depending on the specific surfactant and method, one usually registers only one of these regimes. Therefore, to interpret properly the data, one has to identify which of these four kinetic regimes is observed in the given experiment. Our numerical results for the relaxation of the surface tension, micelle concentration and aggregation number are presented in the form of kinetic diagrams, which reveal the stages of the relaxation process. At low micelle concentrations, "rudimentary" kinetic diagrams could be observed, which are characterized by merging of some stages. Thus, the theoretical modeling reveals a general and physically rich picture of the adsorption process. To facilitate the interpretation of experimental data, we have derived convenient theoretical expressions for the time dependence of surface tension and adsorption in each of the four regimes.


Assuntos
Modelos Químicos , Tensoativos/química , Adsorção , Cinética , Micelas , Tamanho da Partícula , Soluções/química , Tensão Superficial , Fatores de Tempo
13.
Langmuir ; 20(3): 565-71, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-15773076

RESUMO

Static and dynamic light scattering experiments show that the mixed micelles of sodium dodecyl sulfate (SDS) and cocoamidopropyl betaine (CAPB) undergo a sphere-to-rod transition at unexpectedly low total surfactant concentrations, about 10 mM. The lowest transition concentration is observed at molar fraction 0.8 of CAPB in the surfactant mixture. The transition brings about a sharp increase in the viscosity of the respective surfactant solutions due to the growth of rodlike micelles. Parallel experiments with mixed solutions of CAPB and sodium laureth sulfate (sodium dodecyl-trioxyethylene sulfate, SDP3S) showed that the sphere-to-rod transition in SDP3S/CAPB mixtures occurs at higher surfactant concentrations, above 40 mM. The observed difference in the transition concentrations for SDS and SDP3S can be explained by the bulkier SDP3S headgroup. The latter should lead to larger mean area per molecule in the micelles containing SDP3S and, hence, to smaller spontaneous radius of curvature of the micelles (i.e., less favored transition from spherical to rodlike micelles). The static light scattering data are used to determine the mean aggregation number and the effective size of the spherical mixed SDS/CAPB micelles. From the dependence of the aggregation number on the surfactant concentration, the mean energy for transfer of a surfactant molecule from a spherical into a rodlike micelle is estimated.

14.
J Colloid Interface Sci ; 245(2): 371-82, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290371

RESUMO

We observed the diminishing of single microscopic oil drops to study the kinetics of solubilization of n-decane and benzene by micellar solutions of sodium dodecyl sulfate (SDS). Each drop is located in a horizontal glass capillary of inner diameter 0.06 cm filled with a thermostated surfactant solution; the small vertical dimension of the cell prevents the appearance of uncontrollable thermal convections. The experiments show that the radius of an n-decane drop decreases linearly with time, whereas for benzene this dependence is nonlinear. To interpret the data, a kinetic model of solubilization is developed. It accounts for the diffusion and capturing of dissolved oil molecules by the surfactant micelles, as well as for the finite rate of oil dissolution at the oil-water interface. By processing the data, we determined the rate constant of solubilization for a given oil and surfactant. It turns out that the elementary act of catching a dissolved oil molecule by a surfactant micelle occurs under a barrier (rather than diffusion) control. The effective rate of solubilization is greater for the oil, which exhibits a higher equilibrium solubility in pure water (benzene), despite the lower value of the solubilization rate constant for this oil.

15.
Biophys J ; 75(1): 545-56, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9649417

RESUMO

A novel method for studying the interaction of biological cells with interfaces (e.g., adsorption monolayers of antibodies) is developed. The method is called the film trapping technique because the cell is trapped within an aqueous film of equilibrium thickness smaller than the cell diameter. A liquid film of uneven thickness is formed around the trapped cell. When observed in reflected monochromatic light, this film exhibits an interference pattern of concentric bright and dark fringes. From the radii of the fringes one can restore the shape of interfaces and the cell. Furthermore, one can calculate the adhesive energy between the cell membrane and the aqueous film surface (which is covered by a layer of adsorbed proteins and/or specific ligands), as well as the disjoining pressure, representing the force of interaction per unit area of the latter film. The method is applied to two human T cell lines: Jurkat and its T cell receptor negative (TCR-) derivative. The interaction of these cells with monolayers of three different monoclonal antibodies adsorbed at a water-air interface is studied. The results show that the adhesive energy is considerable (above 0.5 mJ/m2) when the adsorption monolayer contains antibodies acting as specific ligands for the receptors expressed on the cell surface. In contrast, the adhesive energy is close to zero in the absence of such a specific ligand-receptor interaction. In principle, the method can be applied to the study of the interaction of a variety of biological cells (B cells, natural killer cells, red blood cells, etc.) with adsorption monolayers of various biologically active molecules. In particular, film trapping provides a tool for the gentle micromanipulation of cells and for monitoring of processes (say the activation of a T lymphocyte) occurring at the single-cell level.


Assuntos
Biofísica/métodos , Adesão Celular/fisiologia , Linfócitos T/fisiologia , Adsorção , Anticorpos Monoclonais , Biofísica/instrumentação , Membrana Celular/imunologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Humanos , Técnicas In Vitro , Interferometria , Células Jurkat , Luz , Modelos Biológicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/ultraestrutura , Termodinâmica
16.
Biophys J ; 74(3): 1409-20, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9512037

RESUMO

We obtained vesicles from purple membrane of Halobacterium halobium at different suspension compositions (pH, electrolytes, buffers), following the procedure of Kouyama et al. (1994) (J. Mol. Biol. 236:990-994). The vesicles contained bacteriorhodopsin (bR) and halolipid, and spontaneously formed during incubation of purple membrane suspension in the presence of detergent octylthioglucoside (OTG) if the protein:OTG ratio was 2:1 by weight. The size distribution of the vesicles was precisely determined by electron cryomicroscopy and was found to be almost independent on the incubation conditions (mean radius 17.9-19 nm). The size distribution in a given sample was close to the normal one, with a standard deviation of approximately +/- 1 nm. During dialysis for removal of the detergent, the vesicles diminished their radius by 2-2.5 nm. The results allow us to conclude that the driving force for the formation of bR vesicles is the preferential incorporation of OTG molecules in the cytoplasmic side of the membrane (with possible preferential delipidation of the extracellular side), which creates spontaneous curvature of the purple membrane. From the size distribution of the vesicles, we calculated the elasticity bending constant, K(B) approximately 9 x 10(-20) J, of the vesicle wall. The results provide some insight into the possible formation mechanisms of spherical assembles in living organisms. The conditions for vesicle formation and the mechanical properties of the vesicles could also be of interest with respect to the potential technological application of the bR vesicles as light energy converters.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/ultraestrutura , Micelas , Detergentes , Congelamento , Halobacterium salinarum/metabolismo , Indicadores e Reagentes , Microscopia Eletrônica/métodos , Modelos Moleculares , Modelos Estruturais , Conformação Molecular , Conformação Proteica , Tioglucosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...